skip to main content


Search for: All records

Creators/Authors contains: "Aranson, Igor S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Bacteria form human and animal microbiota. They are the leading causes of many infections and constitute an important class of active matter. Concentrated bacterial suspensions exhibit large-scale turbulent-like locomotion and swarming. While the collective behavior of bacteria in Newtonian fluids is relatively well understood, many fundamental questions remain open for complex fluids. Here, we report on the collective bacterial motion in a representative biological non-Newtonian viscoelastic environment exemplified by mucus. Experiments are performed with synthetic porcine gastric mucus, natural cow cervical mucus, and a Newtonian-like polymer solution. We have found that an increase in mucin concentration and, correspondingly, an increase in the suspension’s elasticity monotonously increases the length scale of collective bacterial locomotion. On the contrary, this length remains practically unchanged in Newtonian polymer solution in a wide range of concentrations. The experimental observations are supported by computational modeling. Our results provide insight into how viscoelasticity affects the spatiotemporal organization of bacterial active matter. They also expand our understanding of bacterial colonization of mucosal surfaces and the onset of antibiotic resistance due to swarming.

     
    more » « less
  2. Abstract Asymmetric nanotopography with sub-cellular dimensions has recently demonstrated the ability to provide a unidirectional bias in cell migration. The details of this guidance depend on the type of cell studied and the design of the nanotopography. This behavior is not yet well understood, so there is a need for a predictive description of cell migration on such nanotopography that captures both the initiation of migration, and the way cell migration evolves. Here, we employ a three-dimensional, physics-based model to study cell guidance on asymmetric nanosawteeth. In agreement with experimental data, our model predicts that asymmetric sawteeth lead to spontaneous motion. Our model demonstrates that the nanosawteeth induce a unidirectional bias in guidance direction that is dependent upon actin polymerization rate and sawtooth dimensions. Motivated by this model, an analysis of previously reported experimental data indicates that the degree of guidance by asymmetric nanosawteeth increases with the cell velocity. 
    more » « less
  3. Abstract Bacteria are among the oldest and most abundant species on Earth. Bacteria successfully colonize diverse habitats and play a significant role in the oxygen, carbon, and nitrogen cycles. They also form human and animal microbiota and may become sources of pathogens and a cause of many infectious diseases. Suspensions of motile bacteria constitute one of the most studied examples of active matter: a broad class of non-equilibrium systems converting energy from the environment (e.g., chemical energy of the nutrient) into mechanical motion. Concentrated bacterial suspensions, often termed active fluids, exhibit complex collective behavior, such as large-scale turbulent-like motion (so-called bacterial turbulence) and swarming. The activity of bacteria also affects the effective viscosity and diffusivity of the suspension. This work reports on the progress in bacterial active matter from the physics viewpoint. It covers the key experimental results, provides a critical assessment of major theoretical approaches, and addresses the effects of visco-elasticity, liquid crystallinity, and external confinement on collective behavior in bacterial suspensions. 
    more » « less
  4. Abstract

    Assemblies of self-rotating particles are gaining interest as a novel realization of active matter with unique collective behaviors such as edge currents and non-trivial dynamic states. Here, we develop a continuum model for a system of fluid-embedded spinners by coarse-graining the equations of motion of the discrete particles. We apply the model to explore mixtures of clockwise and counterclockwise rotating spinners. We find that the dynamics is sensitive to fluid inertia; in the inertialess system, after transient turbulent-like motion the spinners segregate and form steady traffic lanes. At small but finite Reynolds number instead, the turbulent-like motion persists and the system exhibits a chirality breaking transition leading to a single rotation sense state. Our results shed light on the dynamic behavior of non-equilibrium materials exemplified by active spinners.

     
    more » « less
  5. Abstract

    Whereas self-propelled hard discs undergo motility-induced phase separation, self-propelled rods exhibit a variety of nonequilibrium phenomena, including clustering, collective motion, and spatio-temporal chaos. In this work, we present a theoretical framework representing active particles by continuum fields. This concept combines the simplicity of alignment-based models, enabling analytical studies, and realistic models that incorporate the shape of self-propelled objects explicitly. By varying particle shape from circular to ellipsoidal, we show how nonequilibrium stresses acting among self-propelled rods destabilize motility-induced phase separation and facilitate orientational ordering, thereby connecting the realms of scalar and vectorial active matter. Though the interaction potential is strictly apolar, both, polar and nematic order may emerge and even coexist. Accordingly, the symmetry of ordered states is a dynamical property in active matter. The presented framework may represent various systems including bacterial colonies, cytoskeletal extracts, or shaken granular media.

     
    more » « less
  6. Abstract

    Microscopic swimmers, both living and synthetic, often dwell in anisotropic viscoelastic environments. The most representative realization of such an environment is water-soluble liquid crystals. Here, we study how the local orientation order of liquid crystal affects the motion of a prototypical elliptical microswimmer. In the framework of well-validated Beris-Edwards model, we show that the microswimmer’s shape and its surface anchoring strength affect the swimming direction and can lead to reorientation transition. Furthermore, there exists a critical surface anchoring strength for non-spherical bacteria-like microswimmers, such that swimming occurs perpendicular in a sub-critical case and parallel in super-critical case. Finally, we demonstrate that for large propulsion speeds active microswimmers generate topological defects in the bulk of the liquid crystal. We show that the location of these defects elucidates how a microswimmer chooses its swimming direction. Our results can guide experimental works on control of bacteria transport in complex anisotropic environments.

     
    more » « less
  7. Abstract

    Cell movement in vivo is typically characterized by strong confinement and heterogeneous, three-dimensional environments. Such external constraints on cell motility are known to play important roles in many vital processes e.g. during development, differentiation, and the immune response, as well as in pathologies like cancer metastasis. Here we develop a physics-driven three-dimensional computational modeling framework that describes lamellipodium-based motion of cells in arbitrarily shaped and topographically structured surroundings. We use it to investigate the primary in vitro model scenarios currently studied experimentally: motion in vertical confinement, confinement in microchannels, as well as motion on fibers and on imposed modulations of surface topography. We find that confinement, substrate curvature and topography modulate the cell’s speed, shape and actin organization and can induce changes in the direction of motion along axes defined by the constraints. Our model serves as a benchmark to systematically explore lamellipodium-based motility and its interaction with the environment.

     
    more » « less